(a) Calculate the magnitude of the magnetic field created inside a toroid of N turns (a doughnut-shaped coil of current-carrying wire) carrying current I by using Ampere’s law with loop 1. Do not look at your book while doing this.

(b) Calculate $\oint B \cdot d\vec{s}$ for loop 1 if it has a radius less than b or greater than c (which is not how it is drawn).

(c) If $\oint B \cdot d\vec{s} = 0$ then what can you conclude about \vec{B} around the loops you used in (b)?

(d) Calculate $\oint B \cdot d\vec{s}$ for loop 2 in the figure. Is $\vec{B} = \vec{0}$ outside of the toroid?