1. (a) Calculate the magnitude of the magnetic field created inside a toroid of \(N \) turns (a doughnut-shaped coil of current-carrying wire) carrying current \(I \) by using Ampere's law with loop 1. Do not look at your book while doing this.

\[
\oint \mathbf{B} \cdot d\mathbf{s} = \oint B \, ds = B \oint ds = B (2\pi r) = \mu_0 N I
\]

\[\rightarrow B = \frac{\mu_0 N I}{2\pi r}\]

(b) Calculate \(\oint \mathbf{B} \cdot d\mathbf{s} \) for loop 1 if it has a radius less than \(b \) or greater than \(c \) (which is not how it is drawn).

\(\oint \mathbf{B} \cdot d\mathbf{s} = 0 \) for these loops (they enclose no net current)

(c) If \(\oint \mathbf{B} \cdot d\mathbf{s} = 0 \) then what can you conclude about \(\mathbf{B} \) around the loops you used in (b)?

Not much, unfortunately. We definitely cannot conclude that \(\mathbf{B} = 0 \) on the loop.

\(\mathbf{B} \) might be perpendicular to the path, or the \(\mathbf{B} \) values might average to zero on the loop.

(d) Calculate \(\oint \mathbf{B} \cdot d\mathbf{s} \) for loop 2 in the figure. Is \(\mathbf{B} = 0 \) outside of the toroid?

Only \(I \) passes through loop 2

\(\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I \)

So \(\mathbf{B} \) is definitely not zero outside the toroid.