Instructions: No books or notes allowed. Do not talk to, give help to or receive help from anyone.

\[d\vec{E} = \frac{k dq}{r^2} \hat{r} \]

\[\oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\varepsilon_0} \]

\[\nabla \cdot \vec{B} = 0 \]

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

1. **[25 points]** A spherical ball of radius \(a \) with uniform charge per unit volume \(\rho \) is surrounded by a concentric spherical shell of radius \(b \) having total charge \(Q \) on it. Find the electric field at all points in space. Your answer should be in terms of \(a, b, \varepsilon_0, Q, \rho, \) and \(r \). (Hint: the volume of a sphere or radius \(r \) is \(\frac{4}{3} \pi r^3 \) and its surface area is \(4\pi r^2 \).) Show all your work.

Answer: For \(r < a \), \[\vec{E} = \text{_________________________} \hat{r} \]

For \(a < r < b \), \[\vec{E} = \text{_________________________} \hat{r} \]

For \(r > b \), \[\vec{E} = \text{_________________________} \hat{r} \]