Disclaimer: There are too many types of problems that we have covered this quarter for this review sheet to be representative of them. This is just a sparse sampling of what you are responsible to have learned for the exam.

1. Two forces \(\vec{F}_1 \) and \(\vec{F}_2 \) act along the sides of an equilateral triangle as shown. Point \(O \) is the intersection of the altitudes of the triangle. Find a third force \(\vec{F}_3 \) to be applied at \(B \) and along \(BC \) that will make zero total torque about point \(O \).

Call the distance \(OB \) "\(d \)"

\[
-F_1(\sin 30^\circ) - F_2(\sin 30^\circ) + F_3(\sin 30^\circ) = 0
\]

\[
F_3 = F_1 + F_2
\]

2. Write an expression that describes the pressure variation as a function of position and time for a sinusoidal sound wave in air. Assume \(\lambda = 0.1 \) m and \(\Delta P_{\text{max}} = 0.2 \) N/m².

\[
\Delta P = \Delta P_{\text{max}} \sin \left(\frac{2 \pi x}{\lambda} - wt \right)
\]

\[
k = \frac{2 \pi}{\lambda} = 62.83 \text{ m}^{-1}
\]

\[
\Delta P = (0.2 \text{ N/m}^2) \sin \left(62.83 \text{ m}^{-1} \cdot \frac{21551 \text{ rad}}{5} \right)
\]

\[
u = \frac{343 \text{ m/s}}{62.83} = \frac{\omega}{k} = \frac{\omega}{62.83}
\]

\[
\omega = 21551 \frac{\text{rad}}{5}
\]

3. If \(x(t) = 7t^2 - 2t + 1 \) gives the position of an electron in meters after \(t \) seconds, find \(v_x(2s) \) and \(a_x(2s) \).

\[v_x(t) = 21t^2 - 2\]

\[a_x(t) = 42t\]

\[v_x(2s) = 82 \text{ m/s}\]

\[a_x(2s) = 84 \text{ m/s}^2\]

4. An 8.5 kg object passes through the origin with a velocity of 42 m/s parallel to the \(x \) axis. It experiences a constant 19 N force in the direction of the positive \(y \) axis. Calculate the velocity and the position of the object 15 s after it passes the origin.

\[
x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2
\]

\[
= 0 + 42(15) + 0 = 630 \text{ m} = x
\]

\[a_x = 0\]

\[
y = y_0 + v_{y0}t + \frac{1}{2}a_yt^2
\]

\[
= 0 + 0 + \frac{1}{2}(2.235)(15)^2 = 251.44 \text{ m} = y
\]

\[
v_x = v_{x0} + a_xt
\]

\[
= 42 + 0 \cdot t = 42 \text{ m/s} = v_x
\]

\[
v_y = v_{y0} + a_yt
\]

\[
= 0 + (2.23)(15) = 33.45 \text{ m/s} = v_y
\]
5. A simple pendulum with a length of 2.23 m and a mass of 6.74 kg is given an initial speed of 2.06 m/s at its equilibrium position. Assume that it undergoes simple harmonic motion. Determine its period, total energy, and its maximum angular displacement.

\[\omega = \sqrt{\frac{g}{L}} = \sqrt{\frac{9.81 \text{ m/s}^2}{2.23 \text{ m}}} = 2.097 \text{ rad/s} \]

\[T = \frac{2\pi}{\omega} = 2.996 \text{ s} \]

\[\text{Total energy} = \frac{1}{2} mv^2 = 14.3 \text{ J} \]

At max disp. \[mg\ell (1 - \cos \theta) = 14.3 \text{ J} \]

\[\theta = 25.44^\circ \]

6. A man of mass \(m \) clings to a rope ladder suspended below a balloon of mass \(M \). The balloon is stationary with respect to the ground.

(a) If the man begins to climb the ladder at speed \(v \) with respect to the ladder, in what direction and with what speed (with respect to the earth) will the balloon move? Your answer should involve \(M, m \) and \(v \).

No net external force \(\Rightarrow \) momentum is conserved.

Man's speed rel. to earth is \(u - v \)

\[m(v - v) - MV = 0 \rightarrow mv = (m+M)v \]

\[v = \frac{mv}{m+M} \]

(b) What is the state of motion when the man stops climbing?

Everything is at rest relative to the earth. (Cons. of \(\dot{\theta} \))

7. Calculate the rotational inertia of a sphere of radius 0.5 m with mass 0.56 kg about an axis that is tangent to its surface.

\[I = \frac{2}{3} mr^2 + mr^2 = \frac{5}{3} mr^2 = 0.233 \text{ kg m}^2 \]
8 A 12 g ball of sticky clay is thrown horizontally at a 100 g wooden block initially at rest on a horizontal surface. The clay sticks to the block. After impact the block slide 7.5 m before coming to rest. If the coefficient of kinetic friction between the block and the surface is 0.650, what was the speed of the clay immediately before impact?

\[\text{Momentums are conserved in the collision.} \]

After collision, \[\frac{1}{2} (0.112 \text{ kg}) v_f^2 = -f d = -\mu_k N d = -(0.65)(0.112 \text{ kg})(9.81 \text{ m/s}^2)(7.5 \text{ m}) \]

\[\Delta K \rightarrow v_f = 9.78 \text{ m/s} \]

Cons of \(v_f \): \[(0.012 \text{ kg}) v_i = (0.112 \text{ kg})(9.78 \text{ m/s}) \rightarrow v_i = 91.28 \text{ m/s} \]

9 A playground merry-go-round of radius \(R = 2 \text{ m} \) has a moment of inertia \(I = 250 \text{ kg} \cdot \text{m}^2 \) and is rotating at 10 rev/min about a frictionless vertical axle. Facing the axle, a 25 kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?

\[L_z \text{ is conserved.} \]

\[L_z, i = I \omega = (250 \text{ kg} \cdot \text{m}^2)(20 \pi \text{ rad/min}) \left(\frac{1 \text{ min}}{60 \text{ sec}} \right) = 261.8 \text{ kg} \cdot \text{m}^2 \cdot \text{sec} \]

Cons of \(L_z \): \[261.8 \text{ kg} \cdot \text{m}^2 \cdot \text{sec} = (250 + 25(2m)^2) \omega_f \rightarrow \omega_f = 0.74799 \text{ rad/sec} \]

\[= 7.14 \text{ rev/min} \]

10 An amusement park ride consists of a rotating circular platform 8 m in diameter from which bucket seats are suspended at the end of 2.5 m chains. When the system rotates, the chains holding the seats make an angle of \(\theta = 28^\circ \) with the vertical.

(a) What is the speed of the seat relative to the ground?

\[\text{What linear speed makes } \theta = 28^\circ? \]

\[T \sin \theta = \frac{mg \sin \theta}{\cos \theta} = \frac{mv^2}{r} \]

\[\rightarrow v = \sqrt{\frac{mg \tan \theta}{2.5 \sin \theta + 4}(9.81)(\sin \theta)} \]

(b) If a child of mass 40 kg sits in the 10 kg seat, what is the tension in the chain?

\[T \cos 28^\circ = mg \]

\[T = \frac{mg}{\cos 28^\circ} = \frac{(50 \text{ kg})(9.8)}{\cos 28^\circ} = 554.96 \text{ N} \]
A ski jumper leaves the jump with a speed of 8 m/s at an angle of 15° above the horizontal. The slope below the jump is inclined at 50° above the horizontal, and air resistance is negligible.

(a) Find the distance that the jumper lands down the slope, measured along the line from the jump to the landing point.

\[x = 8 \cos(15°)t = 7.727t \rightarrow t = \frac{17.727}{9.81} \]

\[y = 8 \sin(15°)t - \frac{1}{2} g t^2 \rightarrow y = 0.2679x - 0.08215x^2 \]

These two curves intersect at the solution of \(-\tan 50°x = 0.2679x - 0.08215x^2 \rightarrow x = 17.768 \text{ m}, y = -21.175 \text{ m} \rightarrow \text{distance} = 27.64 \text{ m}\)

(b) Find the jumper’s horizontal and vertical velocity components just before landing.

\[v_x = 8 \frac{m}{s} \cos 15° = 7.727 \frac{m}{s} = v_x \]

\[v_y = v_y - 9.81t = 8 \sin(15°) - 9.81 \left(\frac{17.768}{7.727} \right) = -20.486 \frac{m}{s} = v_y \]

A transverse wave on a string is described by the wave function \(y = (0.120 \text{ m}) \sin \left(\frac{\pi}{8} x + 4\pi t \right) \).

(a) Determine the transverse speed and acceleration of the string at \(t = 0.2 \text{ s} \) for the point on the string located at \(x = 1.6 \text{ m} \).

\[\frac{dy}{dt} = (0.120 \text{ m}) 4\pi \cos \left(\frac{\pi}{8} x + 4\pi t \right) \rightarrow \frac{dy}{dt} = -1.508 \frac{m}{s} \]

\[a_y = -(0.120 \text{ m}) (4\pi)^2 \sin \left(\frac{\pi}{8} x + 4\pi t \right) \rightarrow a_y = 0 \]

(b) What are the wavelength, period, and speed of propagation of the wave?

\[\lambda = \frac{2\pi}{\frac{\pi}{8}} \rightarrow \lambda = 16 \text{ m} \text{ (if x is in m)} \]

\[\omega = 4\pi \sqrt{\frac{2\pi}{\sqrt{\frac{\pi}{8}}} = \frac{1}{2} \text{ s} \text{ (if t is in s)} \]

\[v = \frac{\lambda}{T} = \frac{16}{\frac{1}{2}} = 32 \frac{m}{s} \]